
* ‘ *

NASA Contractor Report 181900
ICASE Report No. 89-41

ICASE
PARALLEL LANGUAGE CONSTRUCTS FOR
TENSOR PRODUCT COMPUTATIONS ON
LOOSELY COUPLED ARCHITECTURES

P. Mehrotra
J. Van Rosendale

Contract No. NAS1-18605
September 1989

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225 - _

(V A S A-C R - 1 d 1 90 0
CONSTRUCTS FOR T t N S O R P90nUCT LqHPUTAT I O N S
ON L O O S E L Y CUIIPl-k:O A K C t i I l F C T U R t S F i n a l
Report (T C A S I ’) 32 p

P A A A L L f L L AtJGUAG E N89-2906 1

CTCL 098 Uncl a s
G3/61 0 2 3 2 3 6 4

Recently, ICASE has begun differentiating between reports with a mathemat-
ical or applied science theme and reports whose main emphasis is some aspect of
computer science by producing the computer science reports with a yellow cover.
The blue cover reports will now emphasize mathematical research. In all other
aspects the reports will remain the same; in particular, they will continue to be
submitted to the appropriate journals or conferences for formal publication.

i

Parallel Language Constructs for Tensor Product
Computations on Loosely Coupled Architectures*

Piyus h Mehro trat
John Van Rosendale

Institute for Computer Applications in Science and Engineering
Hampton, VA 23665.

Abstract

Distributed memory architectures offer high levels of performance and flexibility,
but have proven awkward to program. Current languages for nonshared memory archi-
tectures provide a relatively low-level programming environment, and are poorly suited
to modular programming, and to the construction of libraries. This paper describes
a set of language primitives designed to allow the specification of parallel numerical
algorithms at a higher level. We focus here on tensor product array computations, a
simple but important class of numerical algorithms. We consider first the problem of
programming one dimensional “kernel” routines, such as parallel tridiagonal solvers,
and after that look at how such parallel kernels can be combined to form parallel tensor
product algorithms .

*This research was supported by the Institute for Defense Analysis under contract IDA 10-00008, by
the Office of Naval Research under contract ONR N00014-88-M-0108, and by the National Aeronautics and
Space Administration under NASA contract NAS1-18605 while the authors were in residence at ICASE,
Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665.

+On leave from the Department of Computer Science, Purdue University, West Lafayette, IN 47907.

1 Introduction

Distributed memory architectures offer very high levels of performance a t modest cost.
Machines now becoming available have peak speeds of many gigaflops, a t a fraction of the
cost of high-end vector multiprocessors, and teraflop machines will be possible in a few years.
Given this performance potential, it is clear that such architectures will play an increasing
role in scientific computing.

However, there remains a fundamental problem with distributed memory architectures;
they tend to be quite awkward to program. Parallel programming is generally harder than
sequential programming, since the programmer needs to be aware of the multiple threads of
control flow, and the subtle semantic issues which can arise[6]. Nonshared memory architec-
tures compound this difficulty by forcing the programmer to decompose each data structure
into separate pieces, each “owned” by one of the processors. Also, on such architectures,
all interprocessor communication must be explicitly specified using the low-level message
passing constructs supported by the architecture.

Some of the difficulty of programming distributed memory machines seems to be inherent
in this class of architectures, though a large fraction appears to be due to a lack of adequate
programming tools. The Kali project combines work of the authors with other research on
programming and load balancing being carried out at ICASE [2, 12, 181. The ultimate goal
is to ameliorate the problem of programming distributed memory architectures to the extent
possible.

Nature of the problem

This paper focuses on the problem of expressing tensor product array computations, for
distributed memory architectures. Tensor product algorithms are those in which multidi-
mensional arrays are manipulated by applying operations to lower dimensional slices. Such
algorithms offer both simplicity and efficiency. Thus tensor product algorithms are widely
used in spline fitting, in picture processing, in computer aided geometry, in computational
fluid dynamics, and so forth.

Despite this diversity of applications, the programming issues in tensor product algo-
rithms are universal.
arrays, and one needs to be able to apply one of a number of different operations on those
slices. In some cases, the algorithm applied to the slices will also be a tensor product
algorithm, (c.f. section 5 .) . When these tensor product algorithms are implemented on dis-
tributed memory machines, both the original array, and the operations on the slices may be
distributed. This is the issue addressed in this paper.

. One needs effective ways of pealing off lower dimensional slices of

Finding the proper way of expressing tensor product algorithms on distributed mem-
ory architectures is a basic problem. Tensor product algorithms, and array manipulation

1

algorithms more generally, are a natural target for parallel computing research. Virtually
all large numerical programs involve array manipulation in some way. Moreover, the reg-
ularity of the operations involved, and the potential for highly efficient execution, makes
these algorithms especially susceptible to development of effective language constructs and
programming techniques.

The plan of this paper is as follows. In section 2, we discuss distributed memory pro-
gramming, and current work in the the Kali project. Section 3 considers the programming of
one dimensional kernel routines, such as tridiagonal solvers. After that sections 4 and 5 look
at how these one dimensional kernels can be combined into higher dimensional algorithms
for realis tic numerical computations. Finally, section 6 briefly discusses the adequacies and
limitations of the present approach, and directions in which research appears necessary.

2 Parallel Programming Constructs

Most programming environments for distributed memory architectures are based on “mes-
sage passing languages.” The basic paradigm for such languages is CSP (Communicating
Sequential Processes)[7], in which independently executing sequential tasks interact and syn-
chronize through messages. Examples include Occam[20], and message passing dialects of C
and Fortran as supplied by machine manufacturers.

In one sense, these message passing languages are ideal, since they accurately embody
the set of operations which can be performed by the hardware. However, there are also
serious limitations with such languages; the most obvious is the relatively low-level at which
algorithms must be specified. The programmer first needs to distribute the data structures
across a set of processes, each having its own separate name-space. Then, in order to
share values between processes, the programmer must specify a “send” operation in one
process, and a matching “receive” operation in another. This kind of programming is more
challenging than one would expect, induces a mass of low-level “message passing” detail for
even the simplest algorithms, and can easily lead to deadlock or non-determinancy if one is
not sufficiently careful[6].

Another problem exists with these languages as well. Modern program design relies
heavily on “modular programming” and “top down” design. One builds up large programs
as a collection of “modules” or (‘procedures)’ each designed to perform a specific subtask.
Message passing languages provide no support for this kind of decomposition. One can define
“procedures” running on each processor, but there is no notion of a “distributed procedure”
running on a collection of processors.

2

The KALI Project

The Kali project is an attempt to define tools (languages, compilers, performance pre-
dictors, etc.) to allow the specification of programs for distributed memory architectures
at a higher level, without compromising run-time efficiency. This project is one of sev-
eral projects addressing the basic issue of high-level programming of distributed memory
architectures[l, 211. To achieve the efficiency and generality of message passing languages,
while still permitting high level specification of algorithms is a difficult and multi-faceted
problem. In [17] we looked a t the problem of programming iterative algorithms utilizing
irregular triangular grids, on distributed memory architectures. In this paper, we look at
the equally important problem of programming very regular “tensor product” calculations
on such architectures.

In this paper, we describe the language constructs we are proposing in a Fortran-like
dialect, KF1 (Kali Fortran 1). Our previous papers have generally used a more Pascal like
syntax[l6, 171. However, syntax is not the issue. Since most numerical programmers are
more comfortable with a Fortran-like syntax, we are adopting this syntax in our current
research.

To illustrate the basic concepts in our approach, we consider the simple problem of spec-
ifying a Jacobi iteration for a distributed memory architecture. Listing 1 gives a sequential
version of a Jacobi algorithm for Poisson’s equation on an n by n grid. This is a simple al-
gorithm which can be easily rewritten in a message passing language for parallel execution.
A high level view of this kind of code is given in Listing 2.

In the message passing version of the Jacobi code as shown in Listing 2, the algorithm
is assumed to be distributed over a p2 array of processors. The data is divided into m x m
blocks, where m = n / p , so that each processor contains a contiguous subarray of the full
solution array. Note that the actual array is declared to be (m+2) x (772~2) so that boundary
data can be easily maintained and accessed. Such a distribution of the array data structure
keeps most of the array references in the computation local while balancing the load across
the processors. The values on the boundaries of the subarray “owned” by each processor
need to be communicated to each of its four neighbors at each iteration; hence the sequence
of guarded sends and receives shown. The “if” guards are needed, since processors “owning”
solution values along physical boundaries of the processor array do not send or receive these
values from their neighboring processors. Also, the communication here has been assumed to
be asynchronous; if the underlying architecture requires synchronous communications then
the sends and receives have to be ordered carefully to avoid deadlock.

The KF1 code for this algorithm, given in Listing 3, looks very much like the sequential
Fortran code, though it will compile into message-passing code analogous to that in List-
ing 2. In addition to the code in the sequential Fortran version, the user must specify three
additional kinds of information in KF1:

3

parameter (np = ...)
real X(O:np, O:np), f(O:np, 0:np)
real tmpX(O:np, 0:np)

n = n p - 1
do 1000 it = 1, 50

C

C

C

100
200
C

C

C

&
300
400

copy solution into a tempomry array

do 200 j = 1, n
do 100 i = 1, n

tmpX(i, j) = X(i, j)
continue

continue

update solution array

do 400 j = 1, n
do 300 i = 1, n

X(i, j) = 0.25*(tmpX(i+l, j) + tmpX(i-1, j)
+ tmpX(i, j+l) + tmpX(i, j-1)) - f(i, j)

continue
continue

1000 continue

Listing 1: Sequential Jacobi algorithm

a) the processor array on which the program is to be executed,

b) the distribution of the data structures across these processors, and

c) the parallel loops specifying the computation on the distributed data structures.

These are aspects of the parallel algorithm that are critical to performance. Automatic
generation of such information from sequential code is beyond current compiler technology,
and hence it must be supplied by the programmer.

Processor Array

The first thing that needs to be specified is a “processor array.” This is an array of
physical processors across which the data structures will be distributed, and on which the
algorithm will execute. In the jacobi routine, the processor array is passed in as an argument.

4

I

.
L

I

Code for process P(ip, jp) . . .

parameter (mp = ...)
real X(O:mp, O:mp), f(O:mp, 0:mp)
real tmpX(O:mp, 0:mp)

m = m p - 1
do 1000 it = 1, 50

C

C

C

100
200
C

C

C

C

C

C

C

C

C

copy interior of solution array into a temporary array

do 200 j = 1, m
do 100 i = 1, m

tmpX(i, j) = X(i, j)
continue

continue

send edge values to North, South, East and West neighbors

if (ip .gt. 1) send (P(ip-1, jp), X(l, 1:m))
if (ip .le. np) send (P(ip+l, jp), X(m, 1:m))
if (jp .gt. 1) send (P(ip, jp-1)) X(l:m, 1))
if (jp .le. np) send (P(ip, jp+l), X(l:m, m))

receive edge values from neighbors

if (jp .le. np) recv (P(ip, jpf l) , tmpX(l:m, mp))
if (jp .gt. 1) recv (P(ip, jp-I), tmpX(l:m, 0))
if (ip .le. np) recv (P(ip+l, jp), tmpX(mp, 1:m))
if (ip .gt. 1) recv (P(ip-I, jp), tmpX(0, 1:m))

update solution array X

do 400 j = 1, m
do 300 i = 1, m

X(i, j) = 0.25*(tmpX(i+l, j) + tmpX(i-1, j)
& + tmpX(i, j+ l) + tmpX(i, j-1)) - f(i, j)

300 continue
400 continue

1000 continue

Listing 2: Message-passing version of Jacobi algorithm

5

parsub jacobi(X, f, np; procs)

processors procs(p, p)

real X(O:np, O:np), f(O:np, 0:np) dist (block, block)

n = n p - 1
d o 1000 it = 1, 50

C

C copy solution into a temporary array
C

doall 100 (i, j) = [I, n] * [l, n] on owner(x(i, j))
X(i, j) = 0.25*(X(itl, j) t X(i-1, j) + X(i, j t l) + X(i, j-1)) - f(i, j)

100 continue

1000 continue

return
end

Listing 3: KF1 version of the Jacobi algorithm

The routine declares-the argument procs to be a two dimensional processor array, having
size p by p . The size of the processor array argument is “open”, and is determined by the
actual size of the processor array passed at the point of call. The identifier p reflects this
size, and can be used in the body of the subroutine as a constant. The keyword parsub
declares jacobi to be a parallel subroutine, which will execute in parallel on distributed data.
A processor argument can be passed only to parallel subroutines and each parallel subroutine
must either declare a processor array or must be passed one as an argument.

Only one “real” processor declaration is allowed in the whole program, and it generally
occurs in the main program. The processor array (or its slices) can then be passed around
as a parameter for parallel execution of subroutines. The initial processor declaration is the
“real estate agent” discussed by C. Seitz. The semantics and behavior of the real estate
agent is interesting, but is tangential to the issues here.

Data Distribution Primitives

Given a processor array, the programmer must specify the distribution of data structures
across that processor array. In the current version of KF1, the only distributed data type
supported is distributed arrays. Array distributions are specified by a distribution clause
in their declaration. This clause specifies a sequence of distribution patterns, one for each
dimension of the array. Scalar variables and arrays without a distribution clause are simply

6

replicated, with one copy assigned to each of the processors in the processor array.

Each dimension of a data array can be distributed across the processors in one of several
patterns, or can be left undistributed. In this subroutine, the data array X is distributed
with a (block, block) distribution. This means that each dimension is “blocked,” so that
each processor receives a square subarray of the full array X. Another kind of distribution is
a cyclic distribution, especially useful in numerical linear algebra, in which the elements are
distributed in a round-robin fashion across the processors. The number of dimensions of an
array that are distributed must match the number of dimensions of the underlying processor
array. Asterisks are used to indicate dimensions of data arrays which are not distributed.

When distributed data structures are passed as arguments to parallel subroutines, the
set of processors owning the portions of the data structures being passed, needs to be passed
as well. Thus, for example, passing a slice of a distributed array often entails passing a
matching slice of the processor array. This idea should become clearer through the examples
here.

Doall Loops

Operations on distributed data structures are specified by doall loops. The doall loop
here is similar to the forall loop in BLAZE[16], and to parallel loops in other parallel dialects
of Fortran. The example below shows a loop which performs n - 1 loop invocations, shifting
the values in the array A one space to the left.

doall 100 i = 1, n-1 on owner(A(i))
. . .
A(i) = A(i+l)
. . .

100 continue

The semantics here are “copy-in copy-out,’) in the sense that the values on the right
hand side of the assignment are the old values in array A , before being modified by the loop.
Thus the array A is effectively, “copied into” each invocation of the doall loop, and then the
changes are “copied out.)’ Thus no temporary array is required in the jacobi routine given
in Listing 3.

In addition to the range specification in the header of the doall, there is also an on
clause. This clause specifies the processor on which each loop invocation is to be executed.
In the above program fragment, the on clause causes the ith loop invocation to be executed
on the processor owning the ith element of the array A .

The on clause associated with a doall loop allows the compiler to partition the loop
This process, called “strip- invocations among the processors participating in the loop.

7

mining”, is fairly simple given all the information available to the compiler [12, 131. Note
that the code outside the doall loops is replicated in each of the processors.

The loop headers of purely nested doall loops can be combined into a single header as
shown in Listing 3 for the two loops of the jacobi routine. Here, a product of the ranges is
used to specify that for each value of the outer loop variable i, in the range [l, n], the inner
loop variable j assumes each of the values in the range [l, n].

Specifying Communication

Using KF1, a programmer can specify a data parallel algorithm at a high level, while still
retaining control over those details critical to performance. The additional information
required of the user here is exactly the information most critical to performance. Note that
the body of the doall loop here is independent of the distribution of the array X and of the
processor array P. Thus a variety of distribution patterns can be tried by simple modifications
of this program. This makes “tuning” of parallel programs much easier with this kind of
language than it is with message passing languages.

It is important to note that KF1 contains no explicit communication constructs. The
programmer specifies distribution of data values across the processors, and also specifies the
location where operations are to be performed. From this, the compiler produces the low-
level details of the message passing code to be executed on the architecture by a sequence
of program transformations [12, 171.

In general, given an assignment statement, like that in the Jacobi example, the compiler
can decide which processor “owns” each of the values on the left and right hand sides of the
equation, and can then generate efficient message passing code. This is true of all of the
examples in this paper, and of most others we have studied. In other cases, the compiler
must generate runtime code which will gather such information on the fly[l7].

However, this issue of how communication is expressed is subtle; it is not clear which
approach is best. The choice in KF1, of leaving communication implicit, appears natural
from the users point of view, since it dramatically simplifies programming. It also greatly
simplifies “tuning” of parallel programs, and allows a “modular” or “top down” design
strategy which is impossible with Occam-style languages. However, there is a serious defect
here: benign looking code will sometimes run exceptionally slowly. This is because the
compiler cannot always generate effective message passing executable code, particularly for
complicated loops.

We plan to address this issue by providing performance estimation tools, which will
indicate which parts of a program will compile into efficient executable code, and which will
not. Given such a tool, a programmer should have little trouble designing efficient programs.
In the end, however, the effectiveness of this kind of language will depend on many factors,
including the communications capabilities of architectures, the quality of compilers, and the

8

needs of working programmers. Resolving these issues is an area of active research.

3 Parallel Tridiagonal Solvers

In this section, we describe the programming of a parallel algorithm for tridiagonal
systems of equations, using the KF1 primitives of the last section. Solving tridiagonal
systems is a common “kernel algorithm” for multi-dimensional tensor product algorithms.
0 ther “one-dimensional kernels” frequently needed are cubic spline fitting routines, Fast
Fourier Transforms, and so forth, but tridiagonal solvers are the most commonly used. From
a programming point of view, all of these kernel algorithms are similar, and most can be
treated by analogous “divide and conquer” techniques on parallel architectures.

Consider the problem of solving a tridiagonal matrix of equations of size n. Let A be the
tridiagonal matrix whose i th row has nonzero elements (b;, a;, c;), as shown in Figure 1.
We seek the solution X of the tridiagonal system,

A X = f

assuming that the matrix A can be factored without pivoting.

There are a wide variety of parallel tridiagonal algorithms in the literature[8]. The
particular one described here is a “substructured” algorithm, which is a variant of Sameh’s
“spike” algorithm[5]. This algorithm is a tree-structured “divide and conquer” algorithm
executing on p processors. In the first phase of the algorithm, we perform a sequence of
Zog,(p) reduction steps, each halving the size of the tridiagonal system being solved. In the
second phase of the algorithm, we perform substitution to obtain the solution.

The matrix A is assumed to be distributed by blocks of rows across the p processors.
Given this distribution of the array, processor i is responsible for rows I; = (i - l) n / p + 1
through uj = i n / p . In the first step, processor i performs elimination on rows l j + 2 through
u;, eliminating the lower diagonal of the tridiagonal system, but introducing fill-in in column
Z,. Next, it performs elimination in the reverse direction on rows 24-2 through Z;, eliminating
the upper diagonal, while introducing fill-in in column u;. Thus at the end of this step, the
upper and lower diagonals are eliminated in rows Zj + 1 through u; - 1. Moreover, rows
I; and u; are now coupled directly to each other, and contain no entries corresponding to
the intermediate rows. Thus rows I l l ul , Z2, u2, ..., I,, up now constitute a tridiagonal system
having 2 p equations, as is shown by the highlighting in Figure 1.

In the second step, the pair of equations corresponding to rows I ; and u; on each processor
are “mailed” to some processor. Half of the processors “receive” two pairs of equations,
constituting four adjacent rows of the matrix, and remain “active.” The other half of the
processors receive no equations, and go to sleep. Thus one active processor will receive rows
11, ~ 1 ~ 1 2 , u2, another rows Z3, u3, 14, u4, and so on.

9

11 = 1

1 = " / P
= n / p + 1

= 2 n / p

= n - n / p + I

up = n

a c
b a c

. . .
b a c

b a c
b a c

. . .
b a c

b a c
b a c

* * e
b a

4 F i r s t Reduct ion S t e p

b a C
. .

b a C

. .
El MEI

processor
1

processor
2

processor

P

processor
1

processor
2

processor
P

Figure 1: Reduction in the first step of the elimination process.

10

b a c
b a c

b a c

El
c

Lil
b a
b a c

=+

El

b a c El

Figure 2: Reduction of four rows of a tridiagonal system.

Figure 3: Data flow graph.

These four equations on each active processor are then reduced to two, as shown in
Figure 2, just as in the first step, so that the first and last equations on each active processor
are directly coupled. The result is a tridiagonal system of size p . This process continues,
halving the size of the tridiagonal system at each step in the reduction. After log2(p) such
steps, we obtain a single tridiagonal system having four rows, which we solve by the sequential
Thomas algorithm.

During the Zogz(p) steps of this reduction phase, each of the reduced linear systems
occurring must be saved. Then after the final tridiagonal system with four equations has
been solved, we perform substitution into these saved reduced systems, in the inverse order

11

Figure 4: Computation of intermediate values x1 and x2

in which they were created, and finally recover the solution of the original system.
overall data flow graph of this is substructured algorithm is shown in Figure 3.

The

The substitution process itself is quite trivial. At each step, each of the active processors
must compute its share of the solution of a reduced system. Each processor receives the first
and last values of the solution of this part of the reduced system, as shown in Figure 4, and
computes the intermediate values, as shown. In the first Zogz(p) - 1 steps of the substitution
phase, two intermediate solution values need to be computed, and then these 4 solution
values are mailed to the processors needing them in the next step. In the last step, each
processor computes n / p - 2 solution values, completing the solution.

Mapping of data flow graph unto processor array

The data flow graph- of this substructured algorithm is shown in Figure 3. During the
reduction phase, the number of active processors is reduced by two at each step, until finally
we have just one active processor. During the substitution phase, the number of active
processors doubles at each stage.

There are various ways of mapping this data flow graph onto a multiprocessor architec-
ture. One of the simplest is the shuffle/unshuffle mapping shown in Figure 5. This mapping
is easy to program, and is advantageous when there are’multiple tridiagonal system to be
solved, as we will show later.

KF1 representation of algorithm

It is relatively easy to describe this kind of divide and conquer algorithm in KF1.
Listing 4 gives the KF1 code for this algorithm. Subroutine tr i takes as input vectors b, a,
and c representing the matrix A and the right hand side f, and returns the solution vector
X. These vectors are declared to be distributed by blocks across a one-dimensional processor
array procs of size p . Note that the routine uses the new declaration dynamic for temporary
arrays, e.g. tmpa, whose sizes can be determined only when the subroutine is invoked.
Fortran programmers generally perform dynamic allocation “by hand,” by indexing into the
blank common area. Such techniques are awkward and difficult to handle on distributed

12

Processor

Step 1

Step 2

6 1 7 1 8 5 1 1 1 2 1 3 1 4 1
I I I I

I I I
I I I

I I I I

01

0

0

0

0

CY

I -+
I
I
I
I I
I
I
I I I
I
I

I I
I

I
I I

I I I
I I
I

I
I I I

- L - ;< I - ~ - o - ~ - o - L - o - L - o - L - o - L - ! I I I 10 I

I I I I I
I I I I I I
I I I I I
I I I I I I

I
I

I 1 I I I I 1
I 1 I I I I I
I I I I I I I
I I I I I I I

Figure 5 : Mapping of data flow graph.

Reduction
Phase

Substitution
Phase

memory machines, hence “dynamic arrays” have been included in KF1.

The outer do loop here executes the Zog2(p) steps of the algorithm. In each step, first the
internal equations are eliminated using a doall loop and then the outer two equations are
sent to another processor. In the first step, the number of internal equations to be eliminated
depends on the original distribution of the rows of the matrix, while in the later steps each
processor reduces a system of four equations. The first doall loop is executed only in the
first step. The on clause “on procs(ip)” specifies that the ipth invocation of the loop is to
be executed on processor procs(ip). Each processor uses the predefined functions lower and
upper, to determine the index limits for the block of equations that it “owns”. A sequential

13

I C

I C

C

100

I 200

1000
I C

C

C

~~ ~ ~~

parsub tri(X, f, b, a, c, n; procs)

processors procs(p)
real X(n), f(n) dist(b1ock)
real a(n), b(n), c(n) dist(b1ock)
integer lo, hi, step

dynamic real tmpa(4*p), tmpb(4*p) dist(b1ock)
dynamic real tmpc(4*p), tmpf(4*p) dist(b1ock)

k = log2(p)
do 1000 step = 1, k

if (step .eq. 1) then
doall 100 ip = 1, p on procs(ip)

lo = lower (X, procs(ip))
hi = upper (X, procs(ip))
call reduce(b(lo:hi), a(lo: hi), c(lo: hi), f(lo:hi), hi-lo+ 1)
tmpb(4*ip-3) = b(1o)
tmpb(4*ip) = b(hi)

... code to set up tmpa, tmpc, tmpf similarly

continue

doall 200 ip = 1, p on procs(ip)
else

if (log2(ip)+step .eq. k+l) then
lo = 4*ip - 3
hi = 4*ip
call reduce(tmpb(lo:hi), tmpa(lo:hi), tmpc(lo:hi), tmpf(lo: hi), 4)

endif
continue

endif

call unshff(tmpb, tmpa, tmpc, tmpf, 4*p, step; procs)

continue

... code for substitution phase

re turn
end

Listing 4: Code for a tridiagonal solve

14

L

routine reduce is then called to eliminate the internal equations of the block of equations
owned by the processor. Routine reduce is a simple sequential linear algebra routine, not
shown. After elimination of the internal equations in the first step, the outer two equations
are transferred to temporary arrays to be communicated to the next step of the elimination
process.

In each step, the routine unshfl(shown in Listing 5) is called to permute the equations
among the processors as needed. Given the simple distribution pattern here, the compiler
can convert the assignment statements representing the permutation in unshfi into sends
and receives required for communicating the data’.

After the equations have been moved, the four equations in each of the active processors
are again reduced to two by calling the routine reduce. This is done in the second doall
loop, where the ‘(if” condition controls which processors are active.

Pipelined parallel tridiagonal algorithm

In the above tridiagonal algorithm, the number of active processors is halved at each
phase. If we have to solve more than one tridiagonal system then these computations can be
pipelined so that more of the processors are kept busy. Listing 6 shows a pipelined version
of the tridiagonal solver. The subroutine mtriz accepts m tridiagonal systems each of size
n represented by m x n arrays. Note that the second dimension of the data arrays here is
distributed across the one dimensional processor array, i.e., each processor contains a block
of each of the m tridiagonal systems.

Here, in each of the first rn steps, a new set of equations are reduced to yield a set of
2 p equations. The second doall loop is setup such that different subsets of the processors
“handle” different sets of equations during a step. The routine reduce is the same as discussed
before while routine munshfis similar to unshfexcept that it needs to know which particular
set of equations are to be “unshuffled”.

4 Two Dimensional Tensor Product Computations

In the last section we presented simple one dimensional kernel algorithms in KF1. This
section shows how such one dimensional kernels can be combined for two dimensional tensor
product calculations. The example chosen here is an AD1 iteration. Mapping AD1 methods
to distributed memory architectures has been previously studied by several groups[9, 141.

AD1 (Alternating Direction Implicit) is a well known and effective method for solving

lThe transformation here would be trivial, if the user gave a pragma specifying “inline” expansion of
procedure unshfl Without such a pragma, the inter-procedural analysis required is difficult, and is the focus
of ongoing research.

15

parsub unshff(b, a, c, f, n, phase; procs)

processors procs(p)
real b(n), a(n), c(n), f(n) dist (block)
integer phase, dest, src

k = log2(p)
doall 100 ip = 1, p on procs(ip)

if (log2(ip)+phase .eq. k+1) then
dest = lower (b, procs)
src = (2*10) % n

b(dest) = b(src-1)
b(des t t l) = b(srcf2)
b(destt2) = b(srct3)
b(destt3) = b(src+6)

C
C ... similarly for a, c, and f
C

endif
100 continue

return
end

Listing 5: Routine to “unshuffle” equations.

partial differential equations in two or more dimensions[l5, 191. It is widely used in compu-
tational fluid dynamics, and other areas of computational physics. The name AD1 derives
from the fact that “implicit” equations are solved in both the z and y directions at each
step. These implicit equations are often tridiagonal systems, and can be solved by parallel
tridiagonal solvers, such as those described in the last section. Thus the main task here is
to show how calls to these parallel tridiagonal routines are combined, to specify the AD1
algorithm. Almost any working numerical analyst would know how one does that in Fortran.
With a language like KF1, the same approach yields a distributed parallel implementation.

Mathematically, AD1 works as follows. Suppose one is trying to solve a partial differential
equation:

a (z , Y>UZZ + b(z, Y>Uyy + c(z, Y>U = f
Viewing this as an operator equation

L U = f,

16

parsub mtrix(X, f, b, a, c, m, n; procs)

processors procs(p)
real X(m, n), f(m, n) dist(*, block)
real a(m, n), b(m, n), c(m, n) dist(*, block)
integer lo, hi, step

&

C

C

C

100

&

200

1000
C

C

C

dynamic real tmpa(m, 4*p), tmpb(m, 4") dist(*, block)
dynamic real tmpc(m, 4*p), tmpf(m, 4*p) dist(*, block)

k = log2(p)
d o 1000 step = 1, m t k

if (step .le. m) then
doall ip = 1, p on procs(ip)

lo = lower (X(step, *), procs(ip))
hi = upper (X(step, *), procs(ip))
call reduce(b(step, lo:hi), a(step, lo:hi),

tmpb(step, 4*ip-3) = b(step, lo)
tmpb(step, 4*ip) = b(step, hi)

c(step, lo: hi), f(step, lo:hi), hi-lo+l)

... code t o set up tmpa, tmpc, tmpf

continue

doall ip = 1, p on procs(ip)
j = step + log2(ip) - k
if (j .gt. 1 .and. j .le. m) then

else

lo = 4*ip - 3
hi = 4*ip
call reduce(tmpb(j, lo:hi), tmpa(j, lo:hi),

tmpc(j, lo:hi), tmpf(j, lo:hi), 4)
endif

continue
endif

call munshf(tmpb, tmpa, tmpc, tmpf, 4*p, step; procs)

continue

... code for substitution phase

return
end

Listing 6: Pipelined version to solve m tridiagonal systems

I 17

i
I

one decomposes L into a sum of two parts:

L1U + L2U = f,
where

a
L1 = a(z, Y) G + c(z, Y I P

d
a Y Y

L2 = qz , Y)- + C(Z,Y)/2

Then instead of directly solving equation 1, one successively solves

(L , + I)?J = f
and

(L2 + I) u = v . (3)
Carrying out these two operations gives a first approximation to the solution of equation 1.
After this one replaces the right hand side f by the residual

r = L u - f , (4)

and repeats the process. Continuing, one has an efficient iterative method, which converges
to the solution of equation 1.

The advantage of this algorithm over competing iterative methods is that it converges
quite rapidly, and the solutions to the equations 2 and 3 only require inexpensive tridiagonal
solves. Listing 7 presents this algorithm in KF1. This version of AD1 uses the non-pipelined
parallel tridiagonal solver. Here resid is a simple subroutine which forms the residual of
equation 4. This residual computation is similar to one step of a Jacobi iteration, and
induces the same communication.

The on clauses here force each loop invocation to be performed on the appropriate slice
of the two-dimensional processor array. The construct “owner ((r(i, *))” specifies the set of
processors which own the ith row of the array T. The ith tridiagonal system in the y-direction
is solved by calling the subroutine, tric, as follows:

call tric(v(i, *), r(i, *), bo, b l , bo, ny; owner(r(i, *)))

The routine is passed a slice of the data arrays 21 and r, along with the slice of the proces-
sor array on which these values reside so that it can execute in parallel. The tridiagonal
solver, tric, here is just the constant coefficient version of routine t r i presented in section 3.
Programming AD1 with variable coefficients is not much different, except that there are a
number of additional details not germane to this paper.

18

parsub adi (u, f, nxp, nyp; procs)

processors procs(px, py)

C

C

C

C

C

C

C

100
C

C

C

200

1000

real u(O:nxp, O:nyp), f(O:nxp, 0:nyp) dist (block, block)
dynamic real r(O:nxp, O:nyp), v(O:nxp, 0:nyp) dist (block, block)

common /params/ maxits, a, b, c

ADI iteration for the constant coefficient problem
a*Uxx + b*Uyy + c*U = F

nx = nxp-1
ny = nyp-1

a0 = a/(nx*nx)
a1 = c - 2*a0
bO = b/(ny*ny)
b l = c - 2*bO

do 1000 it = 1, maxits

call resid(r, u, f, nx, ny; procs)

perform tridiagonal solves in y direction

doall 100 i = 1, nx on owner(r(i, *))

continue
call tric(v(i, *), r(i, *), bo, b l , bo, ny; owner(r(i, *)))

perform tridiagonal solves in x direction

doall 200 j = 1, ny on owner(v(*, j))

continue
call tric(u(*, j), v(*, j), aO, al , aO, nx; owner(v(*, j))

continue

return
end

Listing 7: AD1 Algorithm

19

C

100

C

200
1000

processors procs(px, py)

real u(O:nxp, O:nyp), f(O:nxp, 0:nyp) dist (block, block)
dynamic real r(O:nxp, O:nyp), v(O:nxp, 0:nyp) dist (block, block)
integer lo, hi

common /params/ maxits, a, b, c

nx = nxp-1
ny = nyp-1

a0 = a/(nx*nx)
a1 = c/2 - 2*a0
bO = b/(ny*ny)
b l = c/2 - 2*b0

do 1000 it = 1, maxits
call resid(r, u, f, nx, ny; procs)

parsub madi (u, f, nxp, nyp; procs)

Listing 8: Pipelined AD1 Algorithm

perform tridiagonal solves in y direction

doall 100 ip = 1, px on procs(ip, *)
lo = lower(v, procs(ip, *), 1)
hi = upper(v, procs(ip, *), 1)
call mtrixc(v(lo:hi, *), r(lo:hi, *), bo, b l , bo, hi-lofl, ny; procs(ip, *))

continue

perform tridiagonal solves in x direction

doall 200 jp = 1, py on procs(*, jp)
lo = lower(v, procs(*, jp), 2)
hi = upper(v, procs(*, jp), 2)
call mtriyc(u(*, lo:hi), v(*, lo:hi), aO, a l , aO, nx, hi-lo+l; procs(*, jp))

continue
continue

return
end

20

i
h

r

Use of the non-pipelined tridiagonal solver here is somewhat inefficient, since each pro-
cessor shares in the solution of n x / m x tridiagonal systems during the y-direction solution,
and n y / m y tridiagonal systems during the x-direction solutions. One can get better speed-
ups with the pipelined version of the tridiagonal solver. The improved algorithm is given in
Listing 8. Again, the parallel tridiagonal solver, mtrixc, used here is the constant coefficient
version of subroutine mtriz of section 3. Separate routines mtrixc and mtriyc are needed,
since the arrays passed as arguments will be transposed during the y-direction part of the
AD1 iteration.

One can think of the difference between this second pipelined version of ADI, and the
first as being a difference in the extent to which one leaves “strip-mining” of parallel loops to
the compiler. In principal, a sufficiently good compiler could generate this second version of
AD1 from the first, simply by code restructuring. This is rather difficult however, since the
compiler would first have to merge multiple calls to subroutine tri, and then reschedule the
operations in the tridiagonal solver in complicated ways. This is well beyond the capabilities
of existing compilers; for the present, programmers wishing improved performance will have
to perform such transformations by hand.

5 Higher Dimensional Tensor Product Algorithms

The last section looked at two dimensional tensor product computations. One could
plausibly program such algorithms in Occam-like languages, though it would be awkward.
However, that ceases to be the case when one looks at more complex tensor product algo-
rithms. In this section we look at a three dimensional multigrid algorithm having complexity
approaching that of real applications. In our view, having a “tool” like KF1 would be a vir-
tual necessity for routine programming of algorithms like this. The idea of designing and
debugging such algorithms in an Occam-like language is rather daunting.

Tensor product algorithms are widely used for three dimensional numerical computations.
This section examines the expression of a three dimensional multigrid algorithm based on
“zebra” relaxation. This algorithm is moderately complex, and is interesting since the plane
solves required in the zebra relaxation are themselves tensor product multigrid algorithms.

The multigrid algorithm here is one of a number of related multigrid algorithms based
on plane relaxation. This particular one uses “semi-coarsening” and plane relaxations in
only one direction[3, 41. We mention these numerical details only to make it clear that this
algorithm is not artificially complex. Quite the opposite in fact; algorithms of much greater
complexity are routinely used for modeling of physical problems.

Listing 9 presents the subroutine 77193 which performs one multigrid iteration on a three
dimensional rectangular grid. We assume the partial differential equation being solved is
a simple Poisson-like equation, with constant coefficients, and also assume homogeneous
Dirichlet boundary conditions.

21

parsub mg3(u, f, nx, ny, nz; procs)

processors procs(px, py)

C

C

C

100
C
C

C

200
C

C

C

real u(O:nx, O:ny, O:nz), f(O:nx, O:ny, 0:nz) dist (*, block, block)
dynamic real r(O:nx, O:ny, 0:nz) dist (*, block, block)
dynamic real v(0:nx) O:ny, 0:nz/2), v(O:nx, O:ny, 0:nz/2) dist (*, block, block)

perform zebra relaxation on even planes

call resid3(r, u, f; procs)
doall 100 k = 2, nz-2, 2 on owner(u(*, *, k))

continue
call mg2(u(*, *, k), r(*, *, k); owner(u(*, *, k)))

perform zebra relaxation on odd planes

call resid3(r, u, f; procs)
doall 200 k = 1, nz-1, 2 on owner(u(*, *, k))

continue
call mg2(u(*, *, k), r(*, *, k); owner(u(*, *, k)))

recursively solve coarse grid problem

if (nz .gt. 2) then
call resid3(r, u, f; procs)
call rest3(g, r; procs)

call mg3(v, g; procs)
call intrp3(u, v; procs)

endif

return
end

Listing 9: Three Dimensional Multigrid Solver

There are two basic operations here, zebra relaxation and solution of coarse grid problems.
The zebra relaxations are given by the two doall loops. The first performs half of a zebra
sweep by visiting the odd planes, while the second visits the even planes, to complete the
zebra relaxation. The calls to resid3 before each doall loop compute the “residual,” that is,
the amount by which we currently fail to satisfy the differential equation. The relaxation

22

parsub intrp3(u, v, nx, ny, nzf, nzc; procs)

processors procs(px, py)

C

C

C

C

C

C

100
C

C

C

200

300

real u(O:nx, O:ny, O:nzf), v(O:nx, O:ny, 0:nzc) dist (*, block, block)

check whether coarse and fine grid dimensions are properly related

if (nzf .ne. 2*nzc) call error(”Dimensions d o not match in intrp3”)

d o 300 i = 1, nx-1

modify values on even planes ...

doall 100 (j, k) = [I, ny-11 * [2, nzf-2, 21 on owner(u(*, j, k))
u(i, j , k) = u(i, j, k) + v(i, j , k/2)

continue

modify values on odd planes ...

doall 200 (j, k) = [l, ny-1] * [l, nzf-1, 21 on owner(u(*, j, k))
kp = (k+1)/2
km = (k-1)/2
u(i, j, k) = u(i, j , k) + 0.5*(v(i, j , kp) + v(i, j, km))

continue

continue

re turn
end

Listing 10: Three Dimensional Interpolation Routine

itself is performed by the calls to mg2, each of which “solves” a two dimensional partial
differential equation for the solution values on one plane.

The heart of the multigrid algorithm is the “coarse grid correction” in which we recur-
sively call subroutine mg3 with a smaller problem to accelerate the convergence. In the
algorithm here, subroutine my3 is called with arrays and 9, which are half as large as the
original arrays u and f , since the number of points in the z-direction, nz, is halved.

Postponing temporarily issues related to parallelism, lets look briefly at the various kernel
subroutines. Subroutine intrp3 is typical. One possible variant of this routine is given in
Listing 10. This subroutine modifies the current fine grid solution u, using the value of

23

the coarse grid correction v. Since v exists only on a coarse grid having half as many
points, values at intermediate points must be computed by interpolation. The simple linear
interpolation formula

~

giving the intermediate value as the average of the two nearest values, is used here. Note
that more efficient execution would probably be achieved if the sequential i loop was nested
inside the doall loops. This is a trivial program transformation which a good compiler should
be able to perform.

~

1

Subroutines resid3 and rest3 are analogous to intrp3, except the numerical formulas
occurring are more involved. Subroutine mg2, shown in Listing 11, is the two dimensional
analog of mg3.

The reader interested in numerical details is referred to [3, 4, 10, 221. Our primary
interest here is in the expressiveness of the language constructs. Readers familiar with the
programming of such algorithms in sequential Fortran should be able to see that there is
very little difference between the programming of such algorithms in Fortran and in KF1.

The other interesting issue here is that of parallelism. The heart of this issue is the calls
to mg2 in the zebra relaxations:

L

c perform zebra relaxation o n even planes

call resid3(r, u, f ; procs)
doall 100 k = 2, nz-2, 2 on owner(u(*, *, k))

call mg2(u(*,*,k), r(*,*,k); owner(u(*, *, k)))
100 continue

Given our initial blocking of the three dimensional arrays

processors procs(px, py)
real u(O:nx, O:ny, O:nz), f(0:nx) O:ny, 0:nz) dist (*, block, block)

subroutine mg2 is passed a slice of the processor arrays corresponding to the x-y planes:

u(*, *, k) and r(*, *, k)

Thus subroutine mg2 inherits a one dimensional processor array, while its kernel tridiagonal
solver, seqtri, runs sequentially.

24

parsub mg2(u, f, nx, ny; procs)

processors procs(px, py)

real u(O:nx, O:ny), f(O:nx, 0:ny) dist (*, block)

C
C

C

C

100
C

C

C

200
C

C

C

dynamic real r(O:nx, 0:ny) dist (*, block)
dynamic real v(O:nx, 0:ny/2), v(O:nx, 0:ny/2) dist (*, block)

perform zebra relaxation on even planes

call resid2(r, u, f; procs)
doall 100 j = 2, ny-2,2 on owner(u(*, j))

continue
call seqtri(u(*, j), r(*, j))

perform zebra relaxation on odd planes

call resid2(r, u, f; procs)
doall 200 j = 1, ny-1, 2 on owner(u(*, j))

continue
call mg2(u(*, j), d*, $1

recursively solve coarse grid problem

if (ny .gt. 2) then
call resid%(r, u, f; procs)
call rest2(g, r; procs)

call mg2(v, g; procs)
call intrp3(u, v; procs)

endif

return
end

Listing 11: Two Dimensional Multigrid Solver

We could have done things differently by changing the dimensionality of the original
processor array in mg9. Had we used a three dimensional processor array there, the tridiag-
onal solves in mg2 would have been parallel. Conversely, if we had used a one dimensional
processor array, with the three dimensional arrays distributed

real u(O:nx,O:ny,O:nz), f(O:nx,O:ny,O:nz) dist (*,*, block)

25

subroutine mg2 would have been sequential.

The best alternative here depends on the problem size, the number of processors in the
architecture, the cost of communication, and so on. Such issues are outside the scope of
this paper. However, it is worth noting that with KF1-like languages, one can experiment
with alternate array distributions very easily. It is only necessary to change the blocking
patterns in the array declarations, and change some of the doall to do loops, or conversely.
This is a fundamental difference between this kind of language, and Occam-style languages.
With message passing languages, the structure of the array distributions will be embedded
throughout the program, and thus very difficult to change.

6 Conclusions

As distributed memory architectures change from awkward research curiousities, to pro-
duction machines for real applications, more attention needs to be focused on programming
environments. Experience has shown that message passing languages suffice, but are ex-
tremely awkward for complex algorithms such as those described here. The message passing
version of a program is often five to ten times longer than the sequential version. In addition
the intricate “message plumbing” makes programs difficult to debug, and “hard wires” all
algorithm choices, preventing easy experimentation with alternate algorithm designs.

One fundamental problem with such message passing languages is that they provide no
support for “distributed procedures.” On top of this, the massive amounts of low level
message passing detail required to express complex algorithms is a severe impediment. Lan-
guages like KF1 and those in related projects, [l, 211, appear to provide a better alternative.

Most of this paper was focused on the issue of the expressiveness of languages like K F l ,
for multi-dimensional tensor product algorithms. Tensor product algorithms are extremely
common. They are the basis of most numerical weather prediction programs, and are heavily
used in computational fluid dynamics, computer aided geometric design, and so forth. These
algorithms are simple and efficient, and tend to be the method of choice on problems where
they are applicable.

As we have shown, it is relatively easy to describe tensor product algorithms in KF1.
Moreover, the executable code generated will be efficient, since the programmer retains
control over data distribution and scheduling. In the examples here, there would be no
difference between the execution time of algorithms expressed in KF1, and those expressed
in a message passing language, assuming equally good back-end machine code generators.
The price of using KF1 instead of a message-passing language is simply slower compilations,
since there are additional compiler transformations to be performed.

However, despite the ubiquity and importance of tensor product algorithms, it seems
clear that the usability and generality of programming constructs for distributed memory

26

I

c

architectures will be determined largely by their success on more complex problems, such as
those involving adaptive or irregular grids and general sparse matrices. We are addressing
these issues in the Kali project as well. In this paper we have focused on the simpler problem
of expressing tensor product algorithms, since this topic raises a concise set of issues, and
has intrinsic importance. We also believe that many of the ideas here apply as well to more
complex problems. Thus the study of tensor product algorithms can be thought of as a
valuable jumping-off-point for design of language constructs for harder problems.

A compiler for KF1 is being implemented, and a compiler for a related Pascal-like lan-
guage has been implemented by C. Koelbel at Purdue University as part of his thesis research
Ill]. We plan to compare the run-time performance and expressivity of KF1 with that of
related languages for distributed memory machines in the coming months. However, raw
performance is clearly not the real issue; the deeper issue is “usability.” How do users wish
to express algorithms, what level of control do they need/want, which kinds of constructs
seem natural. In the end, it is up to the user community to resolve these issues.

References

D. Callahan and K. Kennedy. Compiling programs for distributed memory multiprocessors.
The Journal of Supercomputing, 2:151-169, 1988.

K. Crowley, J.H. Saltz, R. Mirchandaney, and H. Berryman. Runtime scheduling and execution
of loops on message passing machines. Technical Report 89-7, ICASE, January 1989.

N. Decker and J. Van Rosendale. Operator induced multigrid algorithms using semirefinement.
Technical Report 89-24, ICASE, 1989.

J.E. Dendy, S. McCormick, J. Ruge, T. Russel, and S. Schaffer. Hyperplane relaxation and
semi-coarsening for three dimensional pde’s. In Proceedings of the Fourth Copper Mountain
Conference o n Multigrid Methods, 1989.

D. Gannon and J. Van Rosendale. On the impact of communication complexity in the design of
parallel algorithms. IEEE Transactions on Computers, C-33(12):1180-1194, December 1984.

D.H. Grit and J.R. McGraw. Programming divide and conquer on a multiprocessor. Technical
Report UCRL-88710, Lawrence Livermore National Laboratory, 1983.

C.A.R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):667-
677, August 1978.

S.L. Johnsson. Solving tridiagonal systems on ensemble architectures. Technical Report
YALEU/DCS/RR-436, Yale Research Report, November 1985.

S.L. Johnsson, Y. Saad, and M.H. Schultz. Alternating direction methods on architectures.
Technical Report YALEU/DCS/RR-382, Yale Research Report, October 1985.

27

of the Second Conference o n Hypercube Multiporcessors, 1987.

28

NASA
1. Report No. 2. Government Accession No.
NASA CR- 181900
ICASE Report No. 89-41

4. Title and Subtitle

PARALLEL LANGUAGE CONSTRUCTS FOR TENSOR PRODUCT
COMPUTATIONS ON LOOSELY COUPLED ARCHITECTURES

Report Documentation Page
3. Recipient's Catalog No.

5. Report Date

September 1989

6. Performing Organization Code

7. Authods) 8. Performing Organization Report No.

P. Mehrotra
J. Van Rosendale

9. Performing Organization Name and Address

I n s t i t u t e f o r Computer Appl ica t ions i n Sc ience

89-41
10. Work Unit No.

505-90-21-01
11. Contract or Grant No.

s page) 21. No. of pages

and Engineer ing
M a i l Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

Nat iona l i e r o n a u t i c s and Space Admins i t ra t ion
Langley Research Center
Hampton, VA 23665-5225

12. Sponsorin A ency Name and Address

22. Price

NAS1-18605

19. Security Classif. (of this report)

Unclas s i f i ed

15. Supplementary Notes

Langley Technical Monitor:
Richard W. BArnwell

20. Security Classif. (of ti

Unclas s i f i ed

Submitted t o Jou rna l of P a r a l l e l and
D i s t r i b u t e d Computing

F i n a l Report
16. Abstract

D i s t r i b u t e d memory q r c h i t e c t u r e s o f f e r high levels of performance and
f l e x i b i l i t y , b u t have proven awkord t o program. Current languages f o r nonshared
memory a r c h i t e c t u r e s provide a r e l a t i v e l y low-level programming environment, and
are poorly s u i t e d t o modular programming, and t o t h e c o n s t r u c t i o n of l i b r a r i e s .
This paper d e s c r i b e s a set of language p r i m i t i v e s designed t o a l low t h e s p e c i f i c a -
t i o n of pa ra l l e l numerical a lgor i thms a t a h ighe r level . W e focus he re on t enso r
product a r r a y computations, a s i m p l e b u t important class o f numerical a lgor i thms.
W e cons ider f i r s t the problem of programming one dimensional "kernal" r o u t i n e s ,
such as p a r a l l e l t r i d i a g o n a l s o l v e r s , and a f t e r t h a t look a t how such p a r a l l e l
k e r n e l s can be combined t o form para l le l t enso r product a lgor i thms.

17. Key Words (Suggested by Authorb))
para l l e l programming,

d i s t r i b u t e d memory a r c h i t e c t u r e s

18. Distribution Statement
61 - Computer Programming and Software

I 32
1 A03

NASA FORM 1626 OCT 86

NASA-Langley, 1989

